Solution to 1996 Problem 2


We use Faraday's Law in integral form:

\begin{align*}\int_{\text{closed loop}} \mathbf{E} \cdot d \mathbf{l} = -\frac{d}{dt}\left(\int_{\text{open surface}} \mathbf...
We choose to traverse the loop in a clockwise direction. We also choose the reference direction of the current I to be in the clockwise direction. Then,
\begin{align}\int_{\text{closed loop}} \mathbf{E} \cdot d \mathbf{l} = - 5 \mbox {V} - I R = - 5 \mbox {V} - I 10 \;\Omega\en...
By the right-hand corkscrew rule, d \mathbf{a} points into the page. Therefore, \mathbf{B} \cdot d \mathbf{a} is positive. Therefore,
\begin{align*}-\frac{d}{dt}\left(\int_{\text{open surface}} \mathbf{B} \cdot d \mathbf{a}\right) = - \frac{d}{dt}\left(B \cdo...
Therefore,
\begin{align*}- 5 \mbox {V} - I 10 \;\Omega = -1.5 \;\mathrm{T}\;\mathrm{m}^2\mathrm{/}\mathrm{s} \Rightarrow I = -3.5 \mbox{...
The minus sign indicates that the current is actually in the counterclockwise direction. Therefore, the answer is (B).


return to the 1996 problem list

return to homepage


Please send questions or comments to X@gmail.com where X = physgre.